

GENE-SWitCH – Deliverable D1.2

GENE-SWitCH

The regulatory GENomE of SWine and CHicken: functional annotation during development

Deliverable D1.2 Raw sequences of WGBS and RRBS delivered to ENA and FAANG

Deliverable leader: Ole Madsen (WU)

Authors: Ole Madsen (WU)

Version: 1.0

Due date of deliverable (as in DoA):	M12
Actual submission date:	31/012021, M19

Dissemination level:

PU Public	PU
CO Confidential, only for members of the consortium	
(including the Commission Services)	

Research and Innovation Action, SFS-30-2018-2019-2020 Agri-Aqua Labs Duration of the project: 01 July 2019 – 30 June 2023, 48 months

Table of contents

1	1 Summary			
2	1	Intro	duction	1
3		Resu	lts	4
	3.1		Outsourcing of RRBS and WGBS assays	
	3.2		RRBS data	
	3.3	3 \	WGBS	1
	3.4	1 (Data submission RRBS	5
	3.5	5 [Data submission WGBS	5
4	(Conc	lusion	5
5	I	Devia	ations or delays	5
6		Ackn	owledgements	5
7	I	Refei	rences	5
8		Anne	exes	5
9	(Gloss	sary	7

1 Summary

- <u>Objectives:</u> GENE-SWitCH aims at identifying functional elements located in the genomes of pig and chicken working on seven different tissues at three different developmental stages. One of the important marks of the functional genome is DNA methylation which is generally reverse correlated with gene expression. The objectives were to achieve high quality DNA methylation data from the tissues sampled from the different developmental stages (D1.1) and to make the DNA methylation data available to the GENE-SWitCH partners and the global (worldwide) research community.
- <u>Method</u>: DNA methylation data were achieved by the Bisulfite Sequencing (BS) methodology which is the golden standard for accessing high quality DNA methylation. Two BS methods were applied, 1) Whole genome Bisulfite Sequencing (WBBS) to access the DNA methylation level at all DNA methylation sites of a genome and 2) Reduced Representation Bisulfite Sequencing (RRBS) which is a cost-efficient method to access the DNA methylation in CpG rich regions of the genome. CpG rich regions are generally enriched in functional element regions.
- <u>Main Results:</u> WGBS data were obtained from one of each tissue sample of each developmental stage of pig and chicken (for a total of 21 samples per each species). RRBS data were obtained from three of each tissue sample of each developmental stage of pig and chicken (for a total of 63 samples per each species). The raw DNA methylation data have been submitted to ENA and to the FAANG Data Portal (<u>https://data.faang.org/home</u>) and hereby made public available.
- Partners involved: INRAE, UEDIN, WU

2 Introduction

GENE-SWitCH aims at identifying functional elements located in the genomes of pig and chicken working on seven different tissues at three different developmental stages. One of the important marks of the functional genome elements is DNA methylation. CpG DNA methylation is a very informative regulator of gene expression and also one of the best-studied epigenetic mechanisms in farm animals. Generally, CpG methylation is reversely correlated with gene expression at the functional genome elements.

The objective of this task was to achieve high quality DNA methylation data from the tissues sampled from the different developmental stages (see D1.1) and to make the DNA methylation data available to the GENE-SWitCH partners and the global research community.

High-quality DNA methylation data were obtained by using two BS methods (WGBS and RRBS) allowing DNA base pair resolution of the level of methylation.

The public availability of the DNA methylation data has been done under the FAIR principle (Findable, Accessible, Interoperable, Reusable data) following the Fort Lauderdale principles, as confirmed in the Toronto Statement (Toronto International Data Release Workshop (Birney et al. 2009).

3 Results

3.1 Outsourcing of RRBS and WGBS assays

Both DNA methylation assays (RRBS and WGBS) were outsourced to high quality sequence facilities that perform these assays on a regular basis. The aim was to obtain first class uniform data as needed to make reliable estimates of level of DNA methylation. Separate quotes for RRBS and WGBS of pig and chicken, respectively, were provided by three commercial companies as requested by the EU regulation for outsourcing. The requirements for RRBS were as follows: RRBS pig: 40-50 million reads – single end - 100bp long (or 150bp if this is standard setting) - DNA digestion by Mspl with fragment size in the range of 20-500bp (preferably with the Ovation RRBS Methyl-Seq kit). RRBS chicken: 20-30 million reads – single end - 100bp (or 150bp if this is standard setting) - DNA digestion by Mspl with fragment size 20-500bp (preferably with the Ovation RRBS Methyl-Seq kit). The requirements for the WGBS for both pig and chicken were as follows: 30x average genome coverage - PE - 150bp (or 100bp if this is standard setting) - max 20% PCR duplication. From the separate quotes the best prize and data quality quotes were selected: The RRBS assays were outsourced to the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, US. The WGBS assays were outsourced to Novogene Europe, Cambridge Science Park, Cambridge, CB4 0FW, United Kingdom.

3.2 RRBS data

RRBS libraries were made with the Ovation RRBS Methyl-Seq kit and sequenced on a Novaseq 6000 single-end and 151bp long reads.

RRBS Data from pig was downloaded from the sequence provider and checked for correct file size (MD5sum method). The number of reads varied from 40 to 69 million reads with an average of 59 million reads (annex 1).

RRBS Data from chicken was downloaded from the sequence provider and checked for correct MD5sum. The number of reads varied from 45 to 70 million reads with an average of 55 million reads (annex 1).

3.3 WGBS

DNA was fragmented and treated with bisulfite using the EZ DNA Methylation Gold Kit (Zymo Research), followed by size selection and PCR amplification using KAPA HiFi Hot Start Uracil + Ready Mix (2×). PE 150 bp sequencing was done on a Novaseq 6000.

All the WGBS data were sent to WU on a hard disk support. For the pig, the average genome coverage varied from 33x to 40x with an average of 36x coverage (annex 2). For the chicken, the average genome coverage varied from 28x to 36x with an average of 31x coverage (annex 2).

3.4 Data submission RRBS

Each RRBS dataset submitted to the ENA database website was (https://www.ebi.ac.uk/ena/browser/submit), including MD5sum for each sample. A detailed spreadsheet with all the required metadata was submitted to the FAANG data portal (DCC) and validated by the established DCC procedure. The data are available with the accession numbers: PRJEB41822 (ERP125658): GENE-SWITCH Pig DNA methylation with Reduced representation bisulfite sequencing (RRBS) and PRJEB41829 (ERP125665): GENE-SWITCH Chicken DNA methylation with Reduced representation bisulfite sequencing (RRBS).

3.5 Data submission WGBS

Each tissue/developmental stage WGBS dataset was submitted to the ENA database website (https://www.ebi.ac.uk/ena/browser/submit), including MD5sum for each sample. A detailed spreadsheet with all the required metadata was submitted to the FAANG data portal (DCC) and validated by the established DCC procedure. The data are available with the accession numbers: PRJEB42772 (ERP126677): GENE-SWITCH Pig DNA methylation with Whole Genome bisulfite sequencing (WGBS) and PRJEB42775 (ERP126680): GENE-SWITCH Chicken DNA methylation with Whole Genome bisulfite sequencing (WGBS).

4 Conclusion

High quality DNA methylation data have been obtained from seven tissues at three developmental stages in pig and chicken. The DNA methylation data have been made available to project partners and the global community through ENA and the FAANG data sharing portal.

5 Deviations or delays

There has been a delay (from M12 to M19) for submitting the data to ENA and the FAANG portal, due to delays in animal sampling. This was caused by the breeding delays and restricted access to animals that occurred during the COVID-19 pandemics lockdown in UK (see also D1.1).

6 Acknowledgements

We would like to thank Alexey Sokolov (Part 5, EMBL) for his great help in submitting the data to ENA and the FAANG portal.

7 References

Toronto International Data Release Workshop Authors, Birney E, Hudson TJ, Green ED, Gunter C, Eddy S, Rogers J, Harris JR, Ehrlich SD, Apweiler R, Austin CP, Berglund L, Bobrow M, Bountra C, Brookes AJ, Cambon-Thomsen A, Carter NP, Chisholm RL, Contreras JL, Cooke RM, Crosby WL, Dewar K, Durbin R, Dyke SO, Ecker JR, El Emam K, Feuk L, Gabriel SB, Gallacher J, Gelbart WM, Granell A, Guarner F, Hubbard T, Jackson SA, Jennings JL, Joly Y, Jones SM, Kaye J, Kennedy KL, Knoppers BM, Kyrpides NC, Lowrance WW, Luo J, MacKay JJ, Martín-Rivera L, McCombie WR, McPherson JD, Miller L, Miller W, Moerman D, Mooser V, Morton CC, Ostell JM, Ouellette BF, Parkhill J, Raina PS, Rawlings C, Scherer SE, Scherer SW, Schofield PN, Sensen CW, Stodden VC, Sussman MR, Tanaka T, Thornton J, Tsunoda T, Valle D, Vuorio EI, Walker NM, Wallace S, Weinstock G, Whitman WB, Worley KC, Wu C, Wu J, Yu J. Prepublication data

sharing. Nature. 2009 Sep 10;461(7261):168-70. doi: 10.1038/461168a. PMID: 19741685; PMCID: PMC3073843.t al. 2009. Pre-publication data sharing. Nature 461:168-170

8 Annexes

Annex 1: Number of RRBS reads for Pig and Chicken libraries.

The name of the library indicates the species (SSR: pig and GGA: chicken), the partner in charge of sampling (INRA, UEDIN), the project (GS: GENE-SWitCH), the work package (WP1), the developmental stage (30dpf: foetuses of 30 days, 70dpf: foetuses of 70 days, NB : newborn, E8: embryos of 8 days, E15: embryos of 15 days, HC: hatched chick) and the replicate number.

CENE OWNER ID DI- DDDC	di na a da	Concernitate TD DDBC Chieles	# nee de
GENE SWITCH ID Pig RRBS	# reads	Geneswitch ID RRBS Chicken	# reads
SSR INRA GS WP1 Liver FT 30dpf POOL 2	64,400,818	GGA UEDIN GW WP1 Liver E8 POOL1	57,633,297
SSR INRA GS WP1 Liver FT 30dpf POOL 3	63,626,014	GGA UEDIN GW WP1 Liver E8 POOL2	52,530,707
SSR INRA GS WP1 Liver FT 30dpf POOL 6	62,754,259	GGA UEDIN GW WP1 Liver E8 POOL3	56,765,385
SSR INRA GS WP1 Small Intestine FT 30dpf POOL 1	49,687,818	GGA UEDIN GW WP1 small intestine E8 POOL1	52,431,055
SSR INRA GS WP1 Small Intestine FT 30dpf POOL 3	59,999,494	GGA UEDIN GW WP1 small intestine E8 POOL2	60,664,503
SSR INRA GS WP1 Small Intestine FT 30dpf POOL 6	52,893,607	GGA UEDIN GW WP1 small intestine E8 POOL4	52,701,975
SSR INRA GS WP1 Lung FT 30dpf POOL 2		GGA UEDIN GW WP1 kidney E8 POOL1	
	60,090,492		59,620,519
SSR INRA GS WP1 Lung FT 30dpf POOL 3	60,134,610	GGA UEDIN GW WP1 kidney E8 POOL2	53,771,485
SSR INRA GS WP1 Lung FT 30dpf POOL 6	59,328,413	GGA UEDIN GW WP1 kidney E8 POOL3	50,913,089
SSB INRA GS WP1 Kidney FT 30dpf POOL 1	60,497,417	GGA UEDIN GW WP1 lung E8 POOL1	52,945,187
SSB INRA GS WP1 Kidney FT 30dpf POOL 3	66,220,107	GGA UEDIN GW WP1 lung E8 POOL2	55,934,229
SSR INRA GS WP1 Kidney FT 30dpf POOL 6	61,354,567	GGA UEDIN GW WP1 lung E8 POOL3	56,011,342
SSR INRA GS WP1 Hindbrain FT 30dpf POOL 2	49,568,493	GGA UEDIN GW WP1 hindlimb muscle E8 POOL1	45,041,008
SSR INRA GS WP1 Hindbrain FT 30dpf POOL 3	61,524,661	GGA UEDIN GW WP1 hindlimb muscle E8 POOL2	56,745,930
SSR INRA GS WP1 Hindbrain FT 30dpf POOL 6	61,910,276	GGA UEDIN GW WP1 hindlimb muscle E8 POOL4	50,304,045
SSR INRA GS WP1 Skin FT 30dpf POOL 1	49,213,471	GGA UEDIN GW WP1 hindbrain E8 POOL1	48,397,610
SSR INRA GS WP1 Skin FT 30dpf POOL 3	67,576,497	GGA UEDIN GW WP1 hindbrain E8 POOL2	51,470,164
SSR INRA GS WP1 Skin FT 30dpf POOL 6	62,940,137	GGA UEDIN GW WP1 hindbrain E8 POOL3	52,426,855
SSR INRA GS WP1 Hindlimb muscle FT 30dpf POOL 2	61,024,889	GGA UEDIN GW WP1 skin E8 POOL1	60,413,045
SSR INRA GS WP1 Hindlimb muscle FT 30dpf POOL 3	63,601,544	GGA UEDIN GW WP1 skin E8 POOL2	50,019,583
SSR INRA GS WP1 Hindlimb muscle FT 30dpf POOL 6	61,806,067	GGA UEDIN GW WP1 skin E8 POOL4	50,805,666
SSR INRA GS WP1 liver FT 70dpf 1	58,763,216	GGA UEDIN GW WP1 liver E15 3	65,517,777
SSR INRA GS WP1 liver FT 70dpf 2	65,538,222	GGA UEDIN GW WP1 liver E15 4	46,186,308
SSR INRA GS WP1 liver FT 70dpf 3	59,255,477	GGA UEDIN GW WP1 liver E15 1	45,506,598
SSR INRA GS WP1 INVELTIT 700pl S	59,729,799	GGA UEDIN GW. WP1 small intestine E15 3	55,122,963
SSR INRA GS WP1 small intestine FT 70dpf 1	59,729,799	GGA UEDIN GW WP1 small intestine E15 5	
			62,314,188
SSR INRA GS WP1 small intestine FT 70dpf 4	60,731,370	GGA UEDIN GW WP1 small intestine E15 2	51,979,593
SSR INRA GS WP1 Lung FT 70dpf 1	56,195,081	GGA UEDIN GW WP1 kidney E15 3	51,685,657
SSR INRA GS WP1 Lung FT 70dpf 2	56,953,066	GGA UEDIN GW WP1 kidney E15 4	60,195,062
SSR INRA GS WP1 Lung FT 70dpf 3	57,201,736	GGA UEDIN GW WP1 kidney E15 2	48,021,604
SSR INRA GS WP1 Cerebellum FT 70dpf 1	61,703,337	GGA UEDIN GW WP1 lung E15 3	57,813,751
SSR INRA GS WP1 Cerebellum FT 70dpf 2	61,546,853	GGA UEDIN GW WP1 lung E15 4	63,617,630
SSR INRA GS WP1 Cerebellum FT 70dpf 4	60,774,419	GGA UEDIN GW WP1 lung E15 1	52,798,399
SSR INRA GS WP1 Back skin FT 70dpf 1	66,249,176	GGA UEDIN GW WP1 hindlimb muscle E15 3	48,235,038
SSR INRA GS WP1 Back skin FT 70dpf 2	62,761,711	GGA UEDIN GW WP1 hindlimb muscle E15 4	60,716,732
SSR INRA GS WP1 Back skin FT 70dpf 3	58,090,473	GGA UEDIN GW WP1 hindlimb muscle E15 2	54,637,757
SSR INRA GS WP1 Kidney FT 70dpf 1	62,382,838	GGA UEDIN GW WP1 cerebellum E15 3	63,386,689
SSR INRA GS WP1 Kidney FT 70dpf 2		GGA UEDIN GW. WP1 cerebellum E15 4	
	65,153,631		57,620,310
SSR INRA GS WP1 Kidney FT 70dpf 3	60,543,536	GGA UEDIN GW WP1 cerebellum E15 1	53,287,100
SSB INRA GS WP1 hindlimb muscle FT 70dpf 1	63,112,778	GGA UEDIN GW WP1 skin E15 3	54,938,551
SSR INRA GS WP1 hindlimb muscle FT 70dpf 2	62,614,533	GGA UEDIN GW WP1 skin E15 4	53,965,083
SSR INRA GS WP1 hindlimb muscle FT 70dpf 4	56,145,039	GGA UEDIN GW WP1 skin E15 2	54,673,530
SSR INRA GS WP1 Liver NB M 1	66,245,914	GGA UEDIN GW WP1 liver HC 1	56,297,532
SSR INRA GS WP1 Liver NB M 2	61,611,235	GGA UEDIN GW WP1 liver HC 4	59,732,971
SSR INRA GS WP1 Liver NB F 3	55,047,493	GGA UEDIN GW WP1 liver HC 2	58,313,905
SSR INRA GS WP1 Lung NB M 1	40,863,646	GGA UEDIN GW WP1 small intestine HC 1	59,145,692
SSR INRA GS WP1 Lung NB M 2	64,096,617	GGA UEDIN GW WP1 small intestine HC 4	70,083,600
SSR INRA GS WP1 Lung NB F 4	56,405,093	GGA UEDIN GW WP1 small intestine HC 3	58,788,259
SSR INRA GS WP1 kidney NB M 1	61,658,971	GGA UEDIN GW WP1 shian mestre hc 3	49,417,834
SSR INRA GS WP1 kidney NB M 2	69,444,868	GGA UEDIN GW WP1 kidney HC 4	55,575,948
SSR INRA GS WP1 kidney NB F 3	58,990,877	GGA UEDIN GW WP1 kidney HC 2	50,338,948
SSR INRA GS WP1 Ileum NB M 1	46,660,658	GGA UEDIN GW WP1 lung HC 1	48,464,177
SSR INRA GS WP1 Ileum NB M 2	67,474,098	GGA UEDIN GW WP1 lung HC 4	61,166,071
SSR INRA GS WP1 Ileum NB F 4	63,533,701	GGA UEDIN GW WP1 lung HC 3	47,091,637
SSR INRAGS WP1 cerebellum NB M 1	52,242,142	GGA UEDIN GW WP1 hindlimb muscle HC 1	41,085,678
SSR INRA GS WP1 cerebellum NB M 2	58,205,764	GGA UEDIN GW WP1 hindlimb muscle HC 4	61,058,986
SSR INRA GS WP1 cerebellum NB F 3	57,487,158	GGA UEDIN GW WP1 hindlimb muscle HC 3	52,823,642
SSR INRA GS WP1 gluteus medius NB M 1	49,701,281	GGA UEDIN GW. WP1 œrebellum HC 1	59,504,953
SSR INRA GS WP1 gluteus medius NB M 2	55,637,033	GGA UEDIN GW WP1 œrebellum HC 4	57,109,780
SSR INRA GS WP1 gluteus medius NB F 4	59,237,372	GGA UEDIN GW. WP1 œrebellum HC 2	53,080,498
SSR INRA GS WP1 back skin NB M 1	46,071,685	GGA UEDIN GW WP1 skin HC 1	45,726,179
		GGA UEDIN GW WP1 skin HC 1	
SSR INRA GS WP1 back skin NB M 2	57,662,219	GGA UEDIN GW WPI skin HC 4 GGA UEDIN GW WP1 skin HC 2	58,152,297 51,577,935
SSR INRA GS WP1 back skin NB F 3	50,446,364	GGA UEDIN GW WPI SKIN HC Z	4 31.3/7.935
A	59255612.56	Average	54671484.460318

Annex 2: Average coverage of WGBS for pig and chicken

GENE-SwitCH ID - Pig	X coverage	GENE-SwitCH ID - Chicken	X coverage
SSR_INRA_GS_WP1_Liver_FT_30dpf_POOL_1	32,92592593	GGA_UEDIN_GW_WP1_Liver_E8_POOL4	30,83333333
SSR_INRA_GS_WP1_Small_Intestine_FT_30dpf_POOL_2	39,85185185	GGA_UEDIN_GW_WP1_small_intestine_E8_POOL3	28,41666667
SSR_INRA_GS_WP1_Lung_FT_30dpf_POOL_1	34,48148148	GGA_UEDIN_GW_WP1_kidney_E8_POOL4	28
SSR_INRA_GS_WP1_Kidney_FT_30dpf_POOL_2	33,18518519	GGA_UEDIN_GW_WP1_lung_E8_POOL4	29
SSR_INRA_GS_WP1_Hindbrain_FT_30dpf_POOL_1	36,11111111	GGA_UEDIN_GW_WP1_hindlimb_muscle_E8_POOL3	33,41666667
SSR_INRA_GS_WP1_Skin_FT_30dpf_POOL_2	39,4444444	GGA_UEDIN_GW_WP1_hindbrain_E8_POOL4	30,66666667
SSR_INRA_GS_WP1_Hindlimb_muscle_FT_30dpf_POOL_1	36,48148148	GGA_UEDIN_GW_WP1_skin_E8_POOL3	36,25
SSR_INRA_GS_WP1_liver_FT_70dpf_4	35,4444444	GGA_UEDIN_GW_WP1_liver_E15_2	30,5
SSR_INRA_GS_WP1_small_intestine_FT_70dpf_3	34,33333333	GGA_UEDIN_GW_WP1_small_intestine_E15_1	33,83333333
SSR_INRA_GS_WP1_Lung_FT_70dpf_4	35,14814815	GGA_UEDIN_GW_WP1_kidney_E15_1	32,58333333
SSR_INRA_GS_WP1_Cerebellum_FT_70dpf_3	37,7777778	GGA_UEDIN_GW_WP1_lung_E15_2	30,66666667
SSR_INRA_GS_WP1_Back_skin_FT_70dpf_4	38,74074074	GGA_UEDIN_GW_WP1_hindlimb muscle_E15_1	33,41666667
SSR_INRA_GS_WP1_Kidney_FT_70dpf_4	36,88888889	GGA_UEDIN_GW_WP1_cerebellum_E15_2	28,66666667
SSR_INRA_GS_WP1_hindlimb_muscle_FT_70dpf_3	34,2962963	GGA_UEDIN_GW_WP1_skin_E15_1	32,16666667
SSR_INRA_GS_WP1_Liver_NB_F_4	40,33333333	GGA_UEDIN_GW_WP1_liver_HC_3	29,75
SSR_INRA_GS_WP1_Lung_NB_F_3	33,22222222	GGA_UEDIN_GW_WP1_small_intestine_HC_2	34,58333333
SSR_INRA_GS_WP1_kidney_NB_F_4	35,85185185	GGA_UEDIN_GW_WP1_kidney_HC_3	27,5
SSR_INRA_GS_WP1_Ileum_NB_F_3	33,03703704	GGA_UEDIN_GW_WP1_lung_HC_2	28,16666667
SSR_INRA_GS_WP1_cerebellum_NB_F_4	33,25925926	GGA_UEDIN_GW_WP1_hindlimb muscle_HC_2	29,08333333
SSR_INRA_GS_WP1_gluteus_medius_NB_F_3	33,07407407	GGA_UEDIN_GW_WP1_cerebellum_HC_3	28,33333333
SSR_INRA_GS_WP1_back_skin_NB_F_4	36,18518519	GGA_UEDIN_GW_WP1_skin_HC_3	27,5
Average	35,85740741	Average	30,63492063

The protocols for the production of RRBS and WGBS libraries are available on the GENE-SWitCH sharepoint:

https://sites.inra.fr/site/gene-switch/ layouts/15/start.aspx#/WP1 T15/Forms/AllItems.aspx

It contains the following files:

INRA_SOP_GENESWITCH_WP1_PIG_EXTRACTION_DNA_RNA_20201111.pdf

ROSLIN_SOP_GENESWITCH_WP1_CHICK_EXTRACTION_DNA_RNA_20201111.pdf

WU_SOP_GENESWITCH_WP1_RRBS_library_preparation_20201201.pdf

WU_SOP_GENESWITCH_WP1_WGBS_library_preparation_20210127.pdf

9 Glossary

BS – Bisulfite sequencing.

WGBS – Whole genome bisulfite sequencing.

RRBS - Reduced representation bisulfite sequencing.

 $\mathsf{CpG}-\mathsf{Base}$ combination in the genome which can be methylated ("C" is the base which methylation occurs)